On a Unified Framework for Sampling With and Without Replacement in Decision Tree Ensembles

نویسندگان

  • José María Martínez-Otzeta
  • Basilio Sierra
  • Elena Lazkano
  • Ekaitz Jauregi
چکیده

Classifier ensembles is an active area of research within the machine learning community. One of the most successful techniques is bagging, where an algorithm (typically a decision tree inducer) is applied over several different training sets, obtained applying sampling with replacement to the original database. In this paper we define a framework where sampling with and without replacement can be viewed as the extreme cases of a more general process, and analyze the performance of the extension of bagging to such framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Iterative Decision Rule to minimize cost of Acceptance Sampling Plan in Machine Replacement Problem

In this paper, we presented an optimal iterative decision rule for minimizing total cost in designing a sampling plan for machine replacement problem using the approach of dynamic programming and Bayesian inferences. Cost of replacing the machine and cost of defectives produced by machine has been considered in model. Concept of control threshold policy has been applied for decision making. If ...

متن کامل

Discrimination of ADHD Subtypes Using Decision Tree on Behavioral, Neuropsychological, and Neural Markers

Introduction: Attention-Deficit/Hyperactivity Disorder (ADHD) is a well-known neurodevelopmental disorder. Diagnosis and treatment of ADHD can often lead to a developmental trajectory toward positive results. The present study aimed at implementing the decision tree method to recognize children with and without ADHD, as well as ADHD subtypes.  Methods: In the present study, the subjects includ...

متن کامل

Machine Learning Ensembles: An Empirical Study and Novel Approach

Two learning ensemble methods, Bagging and Boosting, have been applied to decision trees to improve classification accuracy over that of a single decision tree learner. We introduce Bagging and propose a variant of it — Improved Bagging — which, in general, outperforms the original bagging algorithm. We experiment on 22 datasets from the UCI repository, with emphasis on the ensemble’s accuracy ...

متن کامل

Selected Prior Research

• 1996 scaled tree-based classifiers to very large data sets. A fundamental challenge in data mining is to mine data sets that are so large that they do not fit into a computer’s memory. This is important for a wide variety of applications ranging from homeland defense to identifying fraudulent credit card transactions. One of the most accurate techniques in data mining is tree-based classifier...

متن کامل

Improving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering

Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006